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Hexamethylenetetramine (HMT, C6H12N4, also referred to as

urotropin) and azelaic acid [A, HOOC—(CH2)7—COOH]

form a co-crystal or adduct (HMTA, also referred to as

urotropin azelate) which exhibits several structural phases as a

function of temperature. At room temperature, the structure is

orthorhombic, but shows substantial disorder. Here, this

disorder is explored by analyzing the diffuse scattering from

single crystals of HMTA via Monte Carlo simulation. The

disorder is in part occupational, with two orientations of

azelaic acid occurring, and in part thermally induced, which is

to say dynamic. The occupational disorder can be thought of

as a combination of limited-range in-plane (bc plane) negative

correlations combined with effectively zero correlation

between planes (along a), rather like stacking faults. Size

effect, the cross-correlation between molecular orientation

and displacement from average position, is required to

reproduce the observed diffuse scattering.
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1. Introduction

Hexamethylenetetramine (HMT, C6H12N4, also referred to as

urotropin) and azelaic acid [A, HOOC—(CH2)7—COOH]

have been shown to form a co-crystal or adduct (HMTA, also

referred to as urotropin azelate) which exhibits several

structural phases as a function of temperature (Bonin et al.,

2003; Hostettler et al., 1999). At room temperature the system

is orthorhombic with the space group Bmmb and lattice

parameters a = 9.416 (2), b = 26.124 (5) and c = 7.203 (1) Å

(Bonin et al., 2003). The structure is disordered and shows

considerable diffuse scattering.

This study takes as its starting point the average structure

from the literature (Bonin et al., 2003). In the average struc-

ture the azelaic acid site is considered to be occupied by a

superposition of two orientations of the azelaic acid molecule.

To a good approximation the HMT can be considered as a

rigid molecule whose only degrees of freedom are external,

while the A may well be expected to show internal degrees of

freedom, which is to say the molecule may need to be allowed

to flex.

Fig. 1 shows the room-temperature structure of HMTA,

where only one orientation of A has been shown for clarity.

An earlier, very comprehensive study of HMTA (Bonin et

al., 2003) discussed the diffuse scattering from HMTA and

arrived at a correlation structure for molecular flips on A. The

work presented here discusses a detailed analysis of the

diffuse scattering, including a development of a three-

dimensional Monte Carlo (MC) model of HMTA, which

reproduces the key features observed in diffuse scattering



owing to both molecular flips and displacements. The model is

then used to gain insight into the short-range structures

present in the crystal.

2. Monte Carlo modelling

The MC model was implemented in Fortran90 running on

Pentium 4 processors under Debian GNU/Linux. It follows

the procedure set out previously (Welberry et al., 2001;

Goossens & Welberry, 2001) in that a 32� 32� 32 unit cell

‘crystal’ is set up in the computer. Interactions between and

within molecules are modelled in three ways:

(i) the energy associated with overall molecular orientations

(in other words, occupational disorder) is given by an Ising-

like term;

(ii) the energy associated with atomic or molecular displa-

cements is modelled by harmonic springs between atoms;

(iii) potentials on bond angles, torsion angles and bond

lengths give a molecular internal energy, allowing control of

molecular flexibility.

For the modelling of overall molecular orientations the energy

terms are essentially mechanisms for inducing the desired

correlation structure. What structure is desired is determined

interactively through comparisons with the occupancy

features in the data. The force constants for the displacive and

molecular internal energy and their relative scaling are

determined empirically through comparison of the calculated

diffraction patterns with the data.

2.1. Occupancies

The interaction of occupancies gives rise to an inter-

molecular energy. This was modelled first, with the resulting

occupancy structure then fed into a simulation to allow the

displacive disorder to be modelled. For HMTA only A shows

occupational disorder, so only these molecules enter into the

occupancy model. One orientation of A is essentially the 180�

flip of the other about the long axis of the molecule. If S ¼ þ1

is allocated to one orientation and S ¼ �1 to the other, the

energy associated with the orientations (occupancies) can be

modelled using an Ising-like term of the form

Eocc ¼
X

ov

X
pairs

FovSaSb; ð1Þ

where ov indicates occupancy vector types (nearest and

second-nearest neighbours along all three directions were

considered, but it was found that it was necessary to consider

nearest neighbours in the bc plane only). The sum is over all

pairs in the crystal separated by each type of vector. Fov is the

force constant associated with the vector ov. Hence by chan-

ging the sign of Fov positive or negative correlations amongst

the A orientations can be induced; the relative magnitudes of

Fov scale the correlations relative to each other while the

absolute magnitudes relative to kBT govern the sizes of the

correlations, subject to any frustration. Si is the occupancy

variable, �1, for site i.

In practice, a single MC step consists of randomly selecting

a molecule and calculating its energy [see equation (1)], then

randomly selecting another molecule of opposite occupancy

and calculating its energy. The energy of the ‘old’ configura-

tion (Eold) is the sum of the energies of the two molecules. The

occupancies are then exchanged and the energy calculations
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Figure 1
HMTA looking down the cell axes with a single orientation of azelaic acid
molecule shown for clarity. H atoms are omitted. Boxes indicate the unit
cell. Grey molecules are half a lattice parameter into (or out of) the page
relative to the black. A more conventional representation of the structure
can be found in Bonin et al. (2003).



repeated (Enew). If energy is lower with occupancies

exchanged (Enew<Eold), the new configuration is kept, other-

wise the original configuration is retained, although at finite

temperature there is some probability of accepting a move

which increases energy. If when Enew>Eold

exp
�ðEnew � EoldÞ

kBT

� �
>r; ð2Þ

where r is a random number from a uniform distribution 0 to 1,

then the new configuration is incorporated into the model

despite increasing the energy of the system.

If there is a total of Nm molecules in the model, then a single

MC cycle consists of Nm such steps.

2.2. Displacements

To model correlations amongst displacements, the occu-

pancy correlation structure is first established as discussed

above, then displacements amongst the molecules are allowed

to propagate via a set of intermolecular contact vectors. This

set must be large enough to induce the features seen in the

diffraction patterns, it must have symmetries such that the

average structure is maintained, and the types of vectors must

be limited enough to allow interpretation and modelling. Use

is made of a set of ‘effective’ interactions between molecules.

The energy associated with a displacement is modelled

using harmonic potentials. Thus, the total intermolecular

energy associated with atomic and molecular displacements

throughout the crystal is given by

Edisp ¼
X

cv

Fcvðdcv � d0cvÞ
2; ð3Þ

where dcv is the length of the vector, d0cv is its equilibrium

length and cv indexes the contact vector. The size effect – the

influence of occupancy on preferred contact vector length –

can be incorporated by allowing d0cv to depend on the relative

orientations of the interacting molecules. In this case, (3) is

rewritten as

Edisp ¼
X

cv

Fcv½dcv � ð1þ "��Þd0cv�
2; ð4Þ

where "�� are the size-effect parameters. They obey the

constraint

c��"�� þ c�þ"�þ þ cþ�"þ� þ cþþ"þþ ¼ 0; ð5Þ

where c�� are the concentrations of the possible combinations

of signs of occupancies, such that
P

c�� ¼ 1.

The total intermolecular energy of the model crystal, Einter

is given by Einter ¼ Eocc þ Edisp. In practice, however, the

occupancy simulation is done first, with the displacive simu-

lation then operating on the ‘static’ occupancy structure.

2.3. Internal degrees of freedom

An extended molecule with many single bonds, like A, is

expected to be able to flex. Hence, it is necessary to incor-

porate molecular flexibility into the modelling. Further, it may

be reasonable to associate some energy penalty with this

flexing. These degrees of freedom are built into the MC

simulation by describing each molecule using a z-matrix. A z-

matrix gives each atomic position relative to a local set of

coordinates, in which the first atom–atom bond defines the

(local) z direction, the second defines x, and y is chosen to

complete a right-handed set of coordinates. Each atom is

defined in terms of those defined previously, allowing a

modification of an atom’s position to be automatically mani-

fested in the atoms dependent on it. The position of the origin

atom and the orientation of the first bond are given in the

crystal frame of reference by ‘external’ variables, a three-

component vector, x, and a four-component vector (a

quaternion), q, respectively.

Potentials can be put on these internal degrees of freedom if

the flexing is thought to cost an energy penalty beyond that

caused by the stretching or compressing of contact vectors [see

(3)]. This results in an internal (intramolecular) energy, Eintra.

Not all internal degrees of freedom can be released – bond

lengths can often be safely kept fixed, for example, while

phenyl rings may be kept rigid while allowing them to librate.

This was the case, for example, in fitting the diffuse scattering

in molecules such as ibuprofen (Goossens, Heerdegen et al.,

2007; Altin & Goossens, 2007) and benzil, and its derivatives

(Welberry et al., 2001; Welberry & Heerdegen, 2003; Goossens

et al., 2005; Goossens, Welberry et al., 2007).

During the displacement/internal variables simulation, the

energy of a molecule is given by Eintra þ Edisp, with the occu-

pancies having an indirect effect through any size effect built

into the model.

Considering the torsional degrees of freedom, the intra-

molecular energy can then be written

Eintra ¼
X

mol;m

X
i

Fið�’imÞ
2
þ

þ
X

ij

Fijð�’im�’jmÞ; ð6Þ

where i (or j) indexes the degrees of freedom within a mole-

cule and the sum is over all molecules, m, with internal degrees

of freedom, which in this case are the azelaic acid molecules

(mol = molecules). F is the torsional spring constant and �� is

the deviation from the equilibrium position. Since it is possible

for a twist on one torsion to in some sense ‘compensate’ for

that on another, internal degrees of freedom are allowed to

interact pairwise through cross terms of the form

Fijð�’im�’jmÞ. The ‘compensation’ here means that it may be

that if one torsion twists one way and another twists another

way, then the twists may compensate for each other in that

some atoms may not be shifted much despite the new

conformation. This will act to make the two torsion angles

interdependent (correlated in other words) and this energy

term is one way to model this.

3. Experimental

Data were collected using a curved position-sensitive detector

(PSD) system (Osborn & Welberry, 1990) from a single crystal

of HMTA. Reciprocal space planes 0kl, 1kl, 2kl and 3kl were

research papers

458 D. J. Goossens et al. � X-ray diffuse scattering from HMTA Acta Cryst. (2008). B64, 456–465



collected and are reproduced in Fig. 2. The instrument collects

two-dimensional cuts of data. In this case, cuts of constant h.

By collecting several cuts at different values of h, a three-

dimensional dataset is obtained. The data along one axis is less

detailed than along the others. However, earlier results (Bonin

et al., 2003) from cuts in other directions have already shown

that the key occupancy behaviour occurs in the real-space bc

plane, so cuts parallel with this plane are ideal.

Fig. 2 shows much prominent and complex diffuse scat-

tering, particularly in the h 6¼ 0 layers. Some deductions can

be made based on general principles used in the interpretation

of diffuse scattering (Welberry, 2004). Since the 0kl layer is

descriptive of the structure when averaged along a, it shows no

evidence of the occupancy effects. The presence of the diag-

onal streaks through the Bragg peaks (an example is indicated

by arrow ‘A’) suggests that the displacive motions of the

molecules are most strongly correlated along directions

perpendicular to the streak direction, which is the direction of

the backbone of the azelaic acid molecules when projected

into the bc plane. Some of the many strong diffuse spots when

h 6¼ 0 (for example ‘D’ and ‘E’) are occupancy related and are

suggestive of the onset of a superlattice owing to the alter-

nating orientations of the azelaic acid molecules. The streaks

through Bragg spots – apparent in these layers as well as 0kl

(‘B’, ‘C’) – are indicative of displacement correlations. The

difference in the intensities of the two spots in box ‘D’ (there is

a very weak spot at the right-hand end of the box) is greater

than can be explained by scattering factor fall off.

The occupancy spots are much weaker but much broader in

reciprocal space than the Bragg spots (the lower-most of the

three Bragg spots in box ‘B’ in Fig. 2 shows as a single white

pixel and indicates the limit of instrumental resolution at this

level of data binning), indicating that instrumental resolution

is not responsible for diffuse spot size and hence should not

affect the estimation of occupancy correlation strengths and

ranges.

While some of the displacive streaks are quite narrow in one

direction (see box ‘B’ again), the measurement resolution is

still easily good enough to show the strong anisotropy in these

features, and little information appears to be lost.

The powder rings and considerable background intensity

result from the sample degrading in the beam. They reduce the

ability to analyse the data quanti-

tatively.

4. Model crystal

4.1. z-matrices

The model crystal used in the

MC was based on that from average

crystal structures from the litera-

ture (Bonin et al., 2003; Hostettler

et al., 1999) by describing the HMT

and azelaic acid (A) using z-

matrices. HMT and A occur four

times in each unit cell and so the

contents of the unit cell could be

described using three z-matrices

(one for HMT, one for each of the

orientations of A), each accom-

panied by four x and four q. The

diffuse scattering from the gener-

ated models was calculated using

DIFFUSE (Butler & Welberry,

1992).

Table 1 shows the z-matrices

used. Table 1(a) shows the HMT z-

matrix, and Table 1(b) shows that

of one orientation of azelaic acid;

for the other the signs of the dihe-

dral angles are reversed.

The model crystal consisted of

32� 32� 32 unit cells with peri-

odic boundary conditions.
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Figure 2
Cuts through reciprocal space for HMTA. (a) 0kl, (b) 1kl, (c) 2kl and (d) 3kl. Letters A–E denote
features discussed in the text.



4.2. Contact vectors

The contact vectors, which are a subset of all the possible

atom–atom vectors, can be classified in a number of ways.

Table 2 lists and classifies them according to which molecules

they connect. Hence there are three types of vectors: A–A,

HMT–HMT and A–HMT. Vectors are grouped into sets; for

example, the vectors with force constants F1a, F1b and F1c are

considered to form set 1. The vectors within a set substitute for

each other depending on the occupancies; in effect, the "�� in

(4) are implemented by using several ‘different’ vectors, rather

than a single vector with a modification of its length. The

initial estimates for the lengths of these originate from the

average structure, and the size effect is then applied.

5. Modelling

5.1. Occupancies

Rods of scattering in Fig. 6 of Bonin et al. (2003) show that

the occupancies are essentially uncorrelated along a. Spots in

boxes ‘D’ and ‘E’ in Fig. 2 are cross sections through these

rods and, in agreement with Bonin et al. (2003), they are not

present in 0kl.

Fig. 4 shows diffuse scattering calculated from a model in

which no displacements were allowed, but in which the

orientations of the A molecules were correlated in the bc

plane with nearest neighbours in both the b and c directions

having a correlation of �0:5, which is to say nearest neigh-

bours tend towards opposite occupancies, inducing a super-

lattice doubling along both axes. This gives rise to the rows of

spots which can be seen to compare favourably with the

diffuse spots present either side of the rows of Bragg peaks in

Fig. 2(b). Only one layer is reproduced since the lack of a-axis

correlations means that the occupancy spots in 2kl and 3kl are

the same as those in 1kl (except for the X-ray form factor fall

off). No spots show in the 0kl layer because it is the result of

projecting all the molecules onto the basal plane, in which case
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Table 1
The z-matrices used in the DIFFUSE calculation.

(a) shows the HMT z-matrix, (b) shows azelaic acid in one orientation;
reversing the signs of the dihedral angles gives the other. The resulting
molecules are illustrated in Fig. 3.

Number Label l

Distance
from l
(Å) m

Angle with
lm (�) n

Dihedral angle
with lmn (�)

(a)
1 N1 0 0.000 0 0.000 0 0.000
2 C7 1 1.472 0 0.000 0 0.000
3 N2 2 1.446 1 112.303 0 0.000
4 C8 3 1.460 2 108.692 1 �57.890
5 C9 1 1.467 2 107.791 3 �59.380
6 N1 5 1.467 1 111.255 2 58.319
7 C7 6 1.472 5 107.788 1 58.326
8 N2 7 1.446 6 112.303 5 �59.382
9 C7 6 1.472 7 108.257 5 116.338
10 C7 8 1.446 7 107.608 4 117.539

(b)
1 C5 0 0.000 0 0.000 0 0.000
2 C4 1 1.517 0 0.000 0 0.000
3 C3 2 1.509 1 116.233 0 0.000
4 C2 3 1.516 2 111.755 1 �175.720
5 C1 4 1.528 3 112.815 2 �173.669
6 O1 5 1.367 4 107.709 3 �162.223
7 O2 5 1.099 4 120.377 3 41.593
8 C4b 1 1.517 2 112.354 3 �174.743
9 C3b 8 1.509 1 116.233 2 �174.743
10 C2b 9 1.516 8 111.755 1 �175.720
11 C1b 10 1.528 9 112.815 8 �173.669
12 O1b 11 1.367 10 107.709 9 �162.223
13 O2b 11 1.099 10 120.377 9 41.593

Figure 3
Molecules generated by the z-matrices in Table 1: (a) hexamethylenete-
tramine; (b) azelaic acid. Atom numbers give the corresponding row
number in the z-matrix. Hence, for example, atom 1 in azelaic acid is C5,
while for hexamethylenetetramine it is N1.

Figure 4
Calculated 1kl plane of reciprocal space, corresponding to Fig. 2(b), with
no molecular displacements but with the nearest-neighbour bc-plane
occupancy correlations set to �0.5. As with all calculated patterns, Bragg
peaks have been ANDed with the image to provide a more direct
comparison with the data. The bar below shows the colour map used.



there are no ‘occupancies’ as each site has the average struc-

ture.

5.2. Displacements

Fig. 5 shows the first two layers calculated from a model

(‘Model 1’) in which all the intermolecular Fi are set to be

equal and the model is forced to produce atomic displacement

parameters such that the average Biso across all atoms is 6,

which is approximately the value observed in Bragg refine-

ments (Bonin et al., 2003); this value contains a component

due to the disorder and one due to the thermal motion of the

atoms, which is appropriate as the simulation models both

aspects of the structure.. The occupancies have nearest-

neighbour bc plane correlations of �0.5 as for Fig. 4. All

molecules are kept internally rigid. This simple model has

induced a number of important features, such as the streaking

around the Bragg peaks in the 0kl plane (although it is far too

broad) and the four bright pairs of spots near the centre of the

1kl plane (box ‘C’ in Fig. 2). However, these spots should be

far more elongated perpendicular to the radial direction,

indicating the need for anisotropy in the displacive interac-

tions.

The spots in Fig. 5(b) corresponding to those seen in Fig. 2

box ‘D’ are of very similar intensity, whereas the inner spot

should be far brighter. This is also the case in Fig. 4(b), and

suggests a need for some size effects to be introduced into the

model (see below).

Inspection of Fig. 2 shows that there is streaking of the

diffuse scattering in a direction transverse to a line approxi-

mately 45� to the b� (k) direction (streaking is noted by arrow

‘A’ in Fig. 2a). This indicates strong correlations along direc-
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Table 2
Contact vectors summarized.

A = azelaic acid, HMT = hexamethylenetetramine. ‘Contact length’ is the
length from the average structure. Similar vectors which connect the same
neighbours are grouped. Force constants are scaled such that the overall
average B factor is 6.0.

Label

Contact
length
(Å)

Molecules
connected

Model 2
force constant
(kBT, Å�2)

Model 3
force constant
(kBT, Å�2)

Model 3
size effect
(Å)

F1a 5.928 A–A 0.16 0.19 0.00
F1b 5.436 A–A 0.16 0.19 0.00
F1c 6.445 A–A 0.16 0.19 0.00
F2a 4.314 A–A 14.2 16.2 0.00
F2b 4.314 A–A 14.2 16.2 0.00
F3a 5.341 A–A 0.16 0.19 0.00
F3b 5.875 A–A 0.16 0.19 0.00
F3c 5.341 A–A 0.16 0.19 0.00
F4a 5.928 A–A 0.16 0.19 0.00
F4b 5.928 A–A 0.16 0.19 0.00
F4c 5.928 A–A 0.16 0.19 0.00
F5a 3.886 A–A 1.42 1.62 �0.35
F5b 4.859 A–A 1.42 1.62 0.35
F5c 4.780 A–A 1.42 1.62 0.35
F5d 6.047 A–A 1.42 1.62 �0.35
F6 3.843 HMT–HMT 0.09 0.11 0.00
F7 4.168 HMT–HMT 7.1 8.1 0.00
F8 4.285 HMT–HMT 0.09 0.11 0.00
F9 4.714 HMT–HMT 0.09 0.11 0.00
F10a 3.241 A–HMT 0.09 0.11 0.00
F10b 3.241 A–HMT 0.09 0.11 0.00
F11a 3.756 A–HMT 7.1 8.1 0.00
F11b 3.756 A–HMT 7.1 8.1 0.00
F12a 3.277 A–HMT 0.09 0.11 0.00
F12b 3.277 A–HMT 0.09 0.11 0.00
F13a 4.195 A–HMT 7.1 8.1 0.00
F13b 4.195 A–HMT 7.1 8.1 0.00
F14a 3.769 A–HMT 7.1 8.1 0.00
F14b 3.769 A–HMT 7.1 8.1 0.00
F15a 5.368 A–HMT 7.1 8.1 0.00
F15b 5.368 A–HMT 7.1 8.1 0.00

Figure 5
Calculated planes through reciprocal space corresponding to (a) and (b)
in Fig. 2, with occupancies as for Fig. 4 and all spring constants set to be
equal such that the average Biso ¼ 6:0. No size effect or internal degrees
of freedom were applied. (a) 0kl; (b) 1kl.



tions � 45� to the b axis. The contact vectors which have a

projection substantially along this direction are classes 2, 7, 11

and 13–15. Of these, 7, 11 and 13 run parallel to the backbones

of the associated A molecules, and the others are transverse.

With these interactions enhanced by varying degrees deter-

mined interactively (see column ‘Model 2’ in Table 2), the

diffraction patterns shown in Fig. 6 are obtained – with the

elongation of the diffuse scattering agreeing quite well with

that observed in the equivalent planes shown in Fig. 2. This is

‘Model 2’ in Table 2.

5.3. Size effect

Given the enormous number of degrees of freedom in the

system – molecular occupancy, molecular displacement, the

possibility of molecular flexibility and interactions between all

these factors – determining a ‘final’ model is difficult. It

becomes a compromise between excessive numbers of para-

meters and the quality of agreement with the data.

With this in mind, the application of size effect was

explored. As one of the key indicators of size effect is the

relative intensity of the two spots in box ‘D’ in Fig. 2, which is a

transfer of intensity parallel to c�, it was decided to look for

contact vectors whose primary direction of propagation, when

projected onto the kl plane, was the c� direction. From Fig. 1 it

is apparent that such vectors will be A–A vectors, since the

stacking –A–HMT–A–HMT– is along b�. The set of vectors

that best satisfies this criteria is set 5 (Table 2). This set consists

of four vectors: 5a and 5d connect molecules of ‘like’ occu-

pancy, while 5b and 5c connect those of unlike occupancy. This

is illustrated in Fig. 7.

The diffraction patterns calculated from this model are

shown in Fig. 8. It differs from model 2 only in that the size

effects have been applied and the spring constants of the size-

effected vectors have been increased.

Fig. 9 shows the h1l and h4l planes of reciprocal space

calculated from model 3. Comparison with Fig. 6 from Bonin

et al. (2003) shows that the model is quite good, with the

streaks well captured and the thermal blobs also well repro-

duced.

Molecular flexibility was explored – for example the COOH

groups of A were allowed to rotate. However, agreement

between model and data was improved little relative to model

3. Given the added complexity of the model, these extra

degrees of freedom could not be justified, so model 3 was

considered the ‘best’ model.

6. Analysing the model

Once a satisfactory model has been established (model 3, Fig.

8), it can be explored. The assumption is that a model crystal

which produces diffuse scattering patterns similar to those
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Figure 6
Calculated planes through reciprocal space corresponding to (a) and (b)
in Fig. 2, with occupancies as for Fig. 4 and all spring constants roughly
parallel to the directions � �45� to the b axis enhanced over the others
(‘Model 2’ in Table 2); average Biso ¼ 6:0. No size effect or internal
degrees of freedom were applied. (a) 0kl; (b) 1kl.

Figure 7
Contact vectors of set 5 in Table 2, the ones on which size effect is applied
to generate the model whose diffraction patterns are shown in Fig. 8.



from the real crystal has similar short-range order (SRO) to

that found in the real crystal.

Explorations of correlations among variables with a single

molecule show that the y and z coordinates of an A molecule

show a correlation of magnitude � 0:3. This is reasonable if it

is allowed that the molecules are most likely to move along

their length (see Fig. 1), which is a motion in the bc plane. Of

the 12 cross-correlations between the quaternion components

and the coordinates of the molecular origin, nine are of

magnitude less than 0.1 for A, with the strongest of these being

that between the y coordinate of the origin and q3 (keeping in

mind that the qi are not independent due to normalization of

q) and having the value � 0:2. For HMT the strongest is that

between the z coordinate of the origin and q3 and has the

value �0.58, and only one of the cross-correlations has a

magnitude less than 0.1.

When looking at correlations between A and HMT

connected by the strong contacts that run at 45� in the bc plane

(Table 3) it can be seen that the yA � yHMT and zA � zHMT

correlations are by far the most significant, followed by those

between zA and some components of qHMT. This is in accor-

dance with the strong correlations between x and q within

HMT.

Hence, the picture is one in

which longitudinal bc plane

motions of A are transmitted

(within the bc plane) from A to A

via the coupled rotation and

displacement of the intervening

HMT molecules. This information

is presented graphically in Fig. 10,

which shows the correlation

between displacements on

connected A and HMT molecules

as a function of displacement

direction; for example, Fig. 10(a)

shows that displacements parallel

to b are much more highly corre-

lated than those parallel to a, while

in the bc plane the displacements

in all directions on the two mole-

cules are quite highly correlated.

This contact vector lies in the

direction of the A backbone. The

diagram shows A–HMT correla-

tions; since these are the same as

HMT–A, this leads to A–A corre-

lations (for A molecules connect

via the HMT layers) being the

‘squares’ of the A–HMT, so even

the ‘strong’ correlations (e.g. bc

plane) will be relatively weak.

Fig. 11 plots histograms of the

contact lengths for set 5 vectors

from the final model crystal, with

the equilibrium lengths subtracted.

It shows that the vectors

connecting ‘like’ orientations of A

(5a and 5d) are on average shorter

than the average, while others are

longer. This reflects the ability of
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Figure 8
Calculated planes through reciprocal space corresponding to those in Fig. 2, with occupancies as for Fig. 4,
spring constants as for ‘Model 3’ in Table 2 and size effects as noted in the ‘size effect’ column in Table 2.
(a) 0kl; (b) 1kl; (c) 2kl; (d) 3kl.

Table 3
Correlations between positions and orientations of HMT and A
(connected by contact vectors of type 13) as revealed by X-ray diffuse
scattering.

Azelaic acid

HMT x y z q1 q2 q3 q4

x 0.17 �0.03 0.00 �0.04 0.01 �0.06 �0.05
y 0.00 0.38 �0.15 0.04 0.04 �0.05 �0.06
z �0.01 �0.27 0.51 0.06 0.06 �0.01 0.01
q1 0.02 0.13 �0.19 �0.07 �0.02 �0.06 �0.03
q2 �0.04 0.14 �0.22 �0.02 �0.10 0.03 �0.05
q3 0.02 0.16 �0.23 0.01 �0.01 0.05 0.03
q4 0.06 0.12 �0.14 �0.04 0.05 �0.04 0.03



the molecules to pack in the different configurations. While

the size effects are of the order 0.35 Å, the actual distributions

are centred within 0.14 Å of the ‘un-size-effected’ distance.

7. Conclusions

Based on the diffuse scattering data shown in Fig. 2, it appears

that the A molecules in HMTA show substantial short-range

orientational order in which adjacent molecules in b and c

prefer to be of opposite orientation (correlations of �0.5 in

both directions); given that the nearest neighbours in b are

separated by HMT molecules, this implies that the HMTs are

transmitting the interaction, something in which their inherent

rigid cage shape will be crucial. This is reinforced by the

displacive results, which show that there are substantial

correlations between A and HMT variables within the bc

planes.

Displacively, the strongest interactions were found to be in

the diagonal directions within the bc plane, which is along the

lengths of the A molecules, suggesting that the structure can

be considered largely as a series of weakly interacting planes

stacked up along a. This is in accordance with the occupancy

structure, for which the best model was obtained with occu-

pancies uncorrelated along a.

Size effect contributed to improving the balance of intensity

of the spots in box ‘D’ of Fig. 2(b), but the ratio is still not

extreme enough in the model. Synchrotron data may contain

enough detailed information to determine the O-atom distri-
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Figure 9
Calculated planes through reciprocal space from model 3, corresponding
to those in Figs. 6(a) and (b) of Bonin et al. (2003). (a) h1l; (b) h4l.

Figure 10
Correlations between molecular origin displacements on A and HMT
molecules connected by contact vector 13b. � is the angle the
displacements make to the horizontal axis and the length of the arrow
gives the size of the correlation.



bution in more detail, although sample degradation could be a

significant problem at such an intense source.

HMTA is a complex system; multiple types of molecules

showing occupational and displacive disorder, combined with

the potential for molecular flexibility and size effect result in a

system with a great many possible forms of disorder and SRO.

That it is possible to model the diffuse scattering at all, let

alone with considerable agreement with experiment, and then

analyse the model meaningfully is encouraging. The difficul-

ties inherent in structure prediction of flexible molecular

systems (Day et al., 2005) show that the study of such systems

is far from simple, and it is hoped that the analysis of diffuse

scattering can begin to offer new insights into this important

and diverse (and very common) class of molecular materials,

including molecules of industrial and medical significance.
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Chapuis, G., Möckli, P., Ogle, C. A. & Schenk, K. J. (2003). Acta
Cryst. B59, 72–86.

Butler, B. D. & Welberry, T. R. (1992). J. Appl. Cryst. 25, 391–399.
Day, G. M. et al. (2005). Acta Cryst. B61, 511–527.
Goossens, D. J., Heerdegen, A. P., Welberry, T. R. & Beasley, A. G.

(2007). Int. J. Pharm. 343, 59–68.
Goossens, D. J. & Welberry, T. R. (2001). Comput. Phys. Commun.

142, 387–390.
Goossens, D. J., Welberry, T. R., Heerdegen, A. P. & Edwards, A. J.

(2005). Z. Kristallogr. 220, 1035–1042.
Goossens, D. J., Welberry, T. R., Heerdegen, A. P. & Gutmann, M. J.

(2007). Acta Cryst. A63, 30–35.
Hostettler, M., Birkedal, H., Gardon, M., Chapuis, G., Schwarzen-

bach, D. & Bonin, M. (1999). Acta Cryst. B55, 448–458.
Osborn, J. C. & Welberry, T. R. (1990). J. Appl. Cryst. 23, 476–484.
Welberry, T. R. (2004). Diffuse X-ray Scattering and Models of

Disorder. Oxford University Press.
Welberry, T. R., Goossens, D. J., Edwards, A. J. & David, W. I. F.

(2001). Acta Cryst. A57, 101–109.
Welberry, T. R. & Heerdegen, A. P. (2003). Acta Cryst. B59, 760–769.

research papers

Acta Cryst. (2008). B64, 456–465 D. J. Goossens et al. � X-ray diffuse scattering from HMTA 465

Figure 11
Histograms of the lengths of the type 5 contact vectors in the final model
3 simulation.


